Graded Prime Ideals Attached to a Group Graded Module
Authors
Abstract:
Let $G$ be a finitely generated abelian group and $M$ be a $G$-graded $A$-module. In general, $G$-associated prime ideals to $M$ may not exist. In this paper, we introduce the concept of $G$-attached prime ideals to $M$ as a generalization of $G$-associated prime ideals which gives a connection between certain $G$-prime ideals and $G$-graded modules over a (not necessarily $G$-graded Noetherian) ring. We prove that the $G$-attached prime ideals exist for every nonzero $G$-graded module and this generalization is proper. We transfer many results of $G$-associated prime ideals to $G$-attached prime ideals and give some applications of it.
similar resources
graded prime spectrum of a graded module
let be a graded ring and be a graded -module. we define a topology on graded prime spectrum of the graded -module which is analogous to that for , and investigate several properties of the topology.
full textIRRELEVANT ATTACHED PRIME IDEALS OF A CERTAIN ARTINIAN MODULE OVER A COMMUTATIVE RING
Let M be an Artinian module over the commutative ring A (with nonzero identity) and a p spec A be such that a is a finitely generated ideal of A and aM = M. Also suppose that H = H where H. = M/ (0: a )for i
full textOn graded classical prime and graded prime submodules
Let $G$ be a group with identity $e.$ Let $R$ be a $G$-graded commutative ring and $M$ a graded $R$-module. In this paper, we introduce several results concerning graded classical prime submodules. For example, we give a characterization of graded classical prime submodules. Also, the relations between graded classical prime and graded prime submodules of $M$ are studied.
full texton graded classical prime and graded prime submodules
let $g$ be a group with identity $e.$ let $r$ be a $g$-graded commutative ring and $m$ a graded $r$-module. in this paper, we introduce several results concerning graded classical prime submodules. for example, we give a characterization of graded classical prime submodules. also, the relations between graded classical prime and graded prime submodules of $m$ are studied.
full textGraded r-Ideals
Let $G$ be a group with identity $e$ and $R$ be a commutative $G$-graded ring with nonzero unity $1$. In this article, we introduce the concept of graded $r$-ideals. A proper graded ideal $P$ of a graded ring $R$ is said to be graded $r$-ideal if whenever $a, bin h(R)$ such that $abin P$ and $Ann(a)={0}$, then $bin P$. We study and investigate the behavior of graded $r$-ideals to introduce ...
full textirrelevant attached prime ideals of a certain artinian module over a commutative ring
let m be an artinian module over the commutative ring a (with nonzero identity) and a p spec a be such that a is a finitely generated ideal of a and am = m. also suppose that h = h where h. = m/ (0: a )for i
full textMy Resources
Journal title
volume 17 issue 2
pages 59- 74
publication date 2022-09
By following a journal you will be notified via email when a new issue of this journal is published.
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023